
Design Document 
Table of Contents 

1. Introduction 
1. Purpose 
2. Scope 
3. Overview 
4. Reference Material 
5. Definitions and Acronyms 

2. System Overview 
3. System Architecture 

1. Architectural Design 
2. Decomposition Description 
3. Design Rationale 

4. Data Design 
1. Data Description 
2. Data Dictionary 

5. Component Design 
6. Human Interface Design 

1. Overview of User Interface 
2. Screen Images 
3. Screen Objects and Actions 

7. Requirements Matrix 

1. Introduction 

1.1 Purpose 

The purpose of this document is to visualize the system of this application using UML class 
diagrams and sequence diagrams. This document follows closely with the requirements 
document in order to meet all application requirements. 

1.2 Scope 

The Music Assistant is a web-based application that allows choir members (students) to practice 
their music. The main goal of the application is to provide real-time graphical feedback for pitch, 
duration, dynamic, tempo, rhythm, and phrasing. This main goal differentiates us from all other 
existing applications. We would also like to include features from existing applications such as 
statistical analysis and communication between users. Choir instructors (teachers) can 
communicate with students for assistance. 

We are focusing on a web application so that many users can have access to an uncompromised, 
cohesive experience. The application will be available to desktop, tablet, and smartphone users 
alike. In order to group members of a choir and to protect the copyright of pieces of music, users 



will authenticate before they can use the application. Once authenticated, students can practice 
their music, work on practice exercises, and communicate with their teacher. The teacher will 
also authenticate, but will have access to student statistics and will be able to communicate with 
all of their students through a messaging system. 

1.3 Overview 

This software design document describes the system and architecture design of The Music 
Assistant. The document provides details on how the software will be constructed. The document 
describes these details using use cases, sequence diagrams, class diagrams, and textual 
descriptions. 

1.4 Reference Material 

https://sovannarith.files.wordpress.com/2012/07/sdd_template.pdf 

1.5 Definitions and Acronyms 

Web Application (Web App): A cross-platform application accessible on the web using web 
technologies such as HTML, CSS, and JavaScript. 

Duration - an amount of time or how long or short a note, phrase, section, or composition lasts 

Dynamic - the volume of a sound or note 

Pitch - the degree of highness or lowness of a tone 

Phrasing - the manner in which a musician shapes a sequence of notes in a passage of music, in 
order to express an emotion or impression 

Rhythm - the pattern of regular or irregular pulses caused in music by the occurrence of strong 
and weak melodic and harmonic beats 

Tempo - the pace or speed at which a section of music is played 

2. System Overview 

The Music Assistant was born out of a frustration of choir members who could not easily 
practice their piece of music outside of designated practice time with a choir instructor. While 
choir members have always been able to practice their piece at home, they have had no way to 
determine how well they are doing beyond basic intuition. The Music Assistant changes that - 
choir members will be able to practice their piece with real-time feedback for pitch, duration, 
dynamic, tempo, rhythm, and phrasing. This real-time feedback allows the student (choir 
member) to fix their problems as they sing the piece. Algorithms will show where the student is 
in relation to the actual music note at any given time. The more a student practices, the better 
they will become, and this will be shown visually through the use of trend graphs and charts. Not 

https://sovannarith.files.wordpress.com/2012/07/sdd_template.pdf


only will these charts be visible to the student, but the teacher will also be able to view all 
students' performances. An integrated communication tool will allow students to chat with their 
teacher about their current performance and struggles. 

3. System Architecture 

3.1 Architectural Design 

 

3.2 Decomposition Description 

The User class is the superclass of Teacher and Student. The User class contains the user’s 
unique identifier (id) and email. The id will be used to uniquely identify a user for database 
access permissions. The email is used for authentication and any communications that use email. 
Each user will also be linked to one Name instance. Each user can only have one name, but their 
first name and/or last name can be changed at any time. Each user will be linked to 0 or more 
Conversation instances. This link from User to Conversation allows a user to see all of the 
conversations that they’ve been in. 

The Teacher class inherits from the User class. Each teacher teaches 0 or more students, and 
therefore has a link to each Student instance that they teach. Each teacher instructs 0 or more 
choirs. Each choir that a teacher is part of is also linked back to them. Each Choir has 1 or more 
teachers. 

The Student class also inherits from the User class. Each student has 0 or more teachers, and 
therefore has a link to each Teacher instance that teaches them. Each student can be in 0 or more 
choirs, and therefore has a link to each Choir instance that that they are a part of. Each choir that 
a student is part of is also linked back to them. 

The Choir class has a name string and a description string. Each choir is linked to 1 or more 
teachers and 1 or more students. Each choir contains 0 or more music pieces. Due to copyright 
laws, we do not intend to share pieces of music across choirs. 



The Conversation class is contains a created time attribute which holds a date and time. Each 
conversation contains 0 or more messages. Each conversation is created by one User instance, 
and therefore has a link to the user. Each conversation also contains one student and one teacher. 
Note that students can only message their teachers and that each conversation only contains two 
people. Each conversation also contains 0 or more MusicPiece attachments. 

The Message class contains the message text as a string, the sent time (DateTime format), and an 
isDelivered boolean which indicates that the message was delivered to the other user’s device. 
Each message is sent by one user, and therefore has a link to the user that sent the message. 

The MusicPiece class contains the piece’s title as a string, a string description of the piece, a 
release date (DateTime format) and a copyright string. Each piece has 1 or more composers. We 
only store the composer’s name in the Name class. In order to hold choirs responsible for 
copyright infringement, each piece of music is used by only one choir, and each piece has a link 
to the choir that uses it. 

The Name class contains a first name string and a last name string. 

3.3 Design Rationale 

No other architectures were considered. 

4. Data Design 

4.1 Data Description 

When a user logs into the web application, the system will determine if you are a student or a 
teacher. Your id, name, and email will be fetched from browser storage or the database. Your id 
and email will be stored in a User class and your name will be stored in a Name class. The User 
class will reference the instance of the Name class. A type variable will hold “student” if the user 
is a student or “teacher” is the user is a teacher. Note that there are subclasses Teacher and 
Student in the System Architecture diagram, but they are not currently being used for any reason 
other than for visual reference. 

If a user opens their conversations, all conversations will be retrieved from the database. Each 
conversation is added to an instance of the Conversation class and the createdTime variable is 
initialized to the correct value. The last message to be sent or received from each conversation is 
retrieved from the database, along with the other user’s id, email, and name. If the user opens up 
a specific Conversation, all other messages (other than the first message) from that conversation 
will be retrieved. Each Message instance will hold the message text, sentTime, and isDelivered 
boolean. Note that each Message instance is added to a list of messages in the correct 
Conversation instance. This list (array) of messages will hold references to each Message 
instance for that conversation. 



If the user opens up the “Choir” tab, all choirs that they are in will be retrieved from the 
database. For each choir, a new Choir instance will be created. Each Choir instance will contains 
the choir ID, name, and description. 

If the user selects a specific choir, the system will need to retrieve all pieces of music associated 
with the Choir instance from the database. Each MusicPiece instance will hold the title, 
description, release date, and copyright information for that piece of music. The system will also 
need to retrieve the name of the composer of each piece of music. Each composer’s first name 
and last name will be stored in Name class instances. Each MusicPiece instance will have a 
reference to the corresponding Name instance. 

Notes: 

1. There are still pieces of data that we need to determine how to store. These include 
1. The actual piece of music (string representation [AlphaText] or file?) 
2. The statistics for a student 
3. A piece of music that is drawn on digitally (used in conversations) 
4. Gradebook for a teacher 

4.2 Data Dictionary 

1. User 
1. id: String 
2. email: String 
3. profilePicture: Image 
4. getID(): String 
5. getEmail(): String 
6. setEmail(String) 
7. getProfilePicture(): Image 
8. setProfilePicture(Image) 

2. Name 
1. firstName: String 
2. lastName: String 
3. getFirstName(): String 
4. setFirstName(String) 
5. getLastName(): String 
6. setLastName(String) 

3. Choir 
1. id: String 
2. name: String 
3. description: String 
4. getId(): String 
5. getName(): String 
6. setName(String) 
7. getDescription(): String 
8. setDescription(String) 



4. MusicPiece 
1. title: String 
2. description: String 
3. releasedDate: DateTime 
4. copyright: String 
5. getTitle(): String 
6. getDescription(): String 
7. getReleasedDate(): DateTime 
8. getCopyright(): String 
9. setCopyright(String) 

5. Conversation 
1. createdTime: DateTime 
2. getCreatedTime(): DateTime 

6. Message 
1. text: String 
2. sentTime: DateTime 
3. isDelivered: Boolean 
4. getText(): String 
5. getSentTime(): DateTime 
6. getIsDelivered(): Boolean 

5. Component Design 

Current component design is simplistic and all method algorithms are trivial. This will change as 
we determine the complex parts of this product (e.g. music representation, real-time feedback, 
and statistics). 

6. Human Interface Design 

6.1 Overview of User Interface 

When the user enters the web application and there is no log in data stored, they will be 
presented with a log in screen. This screen will allow them to log in with an email and password 
or use a third-party authenticator (e.g. Facebook or Google). 

If the user does not already have an account, they will have the option to sign up. The sign up 
process requires the user’s email and name at a minimum, as well as a password. If the user 
chooses to sign up with Facebook or Google, they will have no required information to enter. We 
will be able to get their email and name from the respective API. The user will also be able to 
upload a profile picture if they choose to do so. The user will then select if they are a student or a 
teacher. If the user is a student, they will then select the Choir that they are in by entering their 
choir id. If the user is a teacher, they will then create a new choir and receive a choir id that they 
will pass along to their students. 

Once the user is authenticated, they will be brought to the home screen. The home screen for 
students will display the last piece of music that they were practicing, statistics, and 



conversations. The home screen for teachers will display the last piece of music that they 
uploaded or created, student statistics, and conversations. 

The student practice screen allows the student to practice a chosen piece of music. As the student 
sings, the real-time feedback system will provide graphical information to the student. The page 
will also provide statistics for the current piece of music selected. 

The teacher practice screen allows the teacher to create new exercises and modify existing 
exercises. 

When a student views their statistics, they can view general statistics (e.g. how often their pitch 
is correct) or drill down into individual statistics for a specific piece of music (e.g. at what points 
their duration was incorrect). 

When a teacher views student statistics, they can view aggregated statistics for all students or 
drill down into an individual student’s statistics. 

Teachers will also have a simple grade sheet. This is a new (potential) requirement and we have 
not yet worked out the details. 

6.2 Screen Images 

 

6.3 Screen Objects and Actions 

See 6.1 

7. Requirements Matrix 

The requirements matrix will be completed once all functionalities are known. In particular, we 
need to determine how to store some data as noted in 4.1. 



User

- id: String
- email: String
-profilePicture: Image

+ getId(): String
+ getEmail(): String
+ setEmail(String)
+ getProfilePicture(): Image
+ setProfilePicture(Image)

Name

- firstName: String
- lastName: String

+ getFirstName(): String
+ setFirstName(String)
+ getLastName(): String
+ setLastName(String)

1 1Has >

Teacher

^ id: String
^ email: String

^ getId(): String
^ getEmail(): String
^ setEmail(String)
^ getProfilePicture(): Image
^ setProfilePicture(Image)

Student

^ id: String
^ email: String

^ getId(): String
^ getEmail(): String
^ setEmail(String)
^ getProfilePicture(): Image
^ setProfilePicture(Image)

Teaches >1 *

< Has* 1
MusicPiece

- title: String
- description: String
- releasedDate: DateTime
- copyright: String

+ getTitle(): String
+ getDescription(): String
+ getReleasedDate(): DateTime
+ getCopyright(): String
+ setCopyright(String)

Has-composer ̂

1

1..*

Choir

- id: String
- name: String
- description: String

+ getId(): String
+ getName(): String
+ setName(String)
+ getDescription(): String
+ setDescription(String)

1

*

Instructs v

1

*

Is-in v

1

1..*

Has-instructor ^

1

1..*

Has-members ^

Conversation

- createdTime: DateTime

+ getCreatedTime(): DateTime

1

1

Contains ^

1

1

Contains ̂

Created-by ^

1

1

1

*

Is-in v

Message

- text: String
- sentTime: DateTime
- isDelivered: Boolean

+ getText(): String
+ getSentTime(): DateTime
+ getIsDelivered(): Boolean

1

*

Contains v

1

1

Sent-by ^

1

*

Contains-attachments ̂

0..*

1
Contains >

1

1

< Used-by


























